Baylor Medical Pavilion

Use of RAM Helps HDR Streamline Design Process and Meet Tight Schedule

Software Speeds Evaluation of Multiple Structural Framing Options

Employee-owned architectural, engineering, and consulting firm HDR Architecture was selected to design and engineer the structural, mechanical, and electrical aspects of the seven-story, 185,000-square-foot Baylor Medical Pavilion. Challenges faced with this office building and parking structure project included the need to evaluate and price multiple structural framing options, work under a compressed design schedule of five months, and repeatedly evaluate post-construction structural modifications as required by tenants. HDR's selection of RAM Structural System for the project reflected the firm's many years of experience with RAM as well as the software's proven reputation for efficiency in these types of scenarios.

RAM Model Serves Dual Role

HDR initially proposed a steel structure for the project. Proceeding on this scheme, it designed the gravity floor framing using RAM Steel Beam and sized the gravity columns using RAM Steel Column. Next, HDR designed the steel moment frames using RAM Frame's steel design provisions module, and designed the column footings in RAM Foundation for both the gravity loads tabulated in RAM Steel and the lateral forces generated from the RAM Frame analysis.

The owner and general contractor then asked HDR to reevaluate the system as a pure concrete structure, and ultimately the decision was made to go with this option. Realizing that the RAM Structural System offers the same level of efficiency and productivity for concrete structures as it does for steel, HDR worked off the RAM model it had already built, changing material settings and member sizes as required for the concrete scenario. After updating the analysis, the design was moved into RAM Concrete.

The framing scheme for the concrete scenario consisted of conventionally reinforced concrete pan joists, 20 ¾-inch deep, with 7-inch ribs and 53-inch-wide pans. HDR took advantage of RAM specialized pan-joist modeling and design tools to quickly build the floors. The reinforcing design for all joists, beams, and columns was completed within RAM Concrete.

Fast Facts

- Both steel and concrete framing options were evaluated for the structure using RAM Structural System, with concrete ultimately selected
- HDR saved a significant amount of design time by utilizing RAM Structural System special pan-joist features to model and design the floors
- RAM Structural System was used to evaluate tenant-required modifications to the floor slab after construction

RAM Structural System offered HDR the ability to make floor framing changes quickly and accurately.
The limited time available to produce construction drawings was a critical project constraint. RAM pan-joist generation feature enabled the HDR structural engineers to evaluate several different pan-layouts and determine the optimal scheme for an efficient design. As a result, the design phase was completed in a five months.

RAM Concrete Makes Redesign Easier, Quicker

RAM Structural System also offered HDR the ability to make floor framing changes quickly and accurately. This allowed HDR to add openings in floors and increase design loads to meet specific needs as new tenants for the project came onboard. Senior design engineer Russell Williams said, “RAM Concrete made the redesign process much easier and much quicker. Even after construction was completed, tenant modifications were easily evaluated using this software.”

Baylor Medical Pavilion is an example of a project for which HDR harnessed the full power of the RAM Structural System, enabling it to bring the job to completion in less time.

“RAM Concrete made the redesign process much easier. Even after construction was completed, tenant modifications were easily evaluated using RAM Concrete.”

Contact Bentley

1-800-BENTLEY (1-800-236-8539)
Outside the US +1 610-458-5000

Global Office Listings

www.bentley.com/contact