PLAXIS® MoDeTo®
Innovative Monopile Design

PLAXIS MoDeTo introduces an enhanced design method for monopile foundations. It transfers the results of the PISA Joint Industry Research Project to daily engineering practice. PLAXIS MoDeTo enables dramatic reductions in the amount of steel of each monopile and, as such, in the overall costs of any wind farm. It can be used as a stand-alone tool for the rule-based design method and in connection with PLAXIS 3D for the numerical-based design method.

A Well-proven Finite Element Solution
The enhanced design method of PLAXIS MoDeTo analyzes the ability of monopile foundations to resist lateral loads on the basis of a 1D Timoshenko beam finite element model, accurate even for large diameter monopiles, and realistic soil reaction curves, while retaining many of the assumptions of the more conventional p-y approach. Research has shown a potential reduction in the embedded length of the piles by up to 35%.

PLAXIS MoDeTo reaches its full potential when used with PLAXIS 3D, which enables the automatic calibration of the soil reaction curves to the specific design space and characteristics of the site. In addition, PLAXIS 3D offers a complete, well-proven and robust finite element solution for any type of offshore or onshore structure.

Efficient Design Translates to XXL Savings
In the very competitive offshore wind industry, less conservative dimensioning of each monopile of a wind farm will result in a significant reduction in the amount of steel and, therefore, in fabrication, transportation, and installation costs.

Seamless Integration with the PLAXIS Environment
PLAXIS MoDeTo can be used as either a stand-alone application, if the user supplies the soil reaction curves, or with PLAXIS 3D, to calibrate the soil reaction curves numerically according to the design space and specific properties of the site.

In addition to the automatic calibration of soil reaction curves for PLAXIS MoDeTo, PLAXIS 3D offers a complete solution for the offshore wind industry, whether bottom-fixed or floating. With its broad range of capabilities, multicore calculations and 64-bit architecture, PLAXIS 3D along with its add-on modules, 3D PlaxFlow and 3D Dynamics, can deal with the largest and most complex geotechnical models, including jackets, tripods, and suction anchors.

Principal stress directions around a monopile foundation.

State-of-the-Art Research Brought to Engineering Practice
PLAXIS MoDeTo has been developed in collaboration with Oxford University and Fugro. It transfers the enhanced design method established in PISA Phase 1 and 2 to current industry design practice. Future findings of PISA will be implemented as they become available.

Innovative, Robust, and Reliable
PLAXIS MoDeTo is developed following the PLAXIS engineering process, which has consistently delivered stable, robust, and well-defined geotechnical finite element software for decades. The underlying procedure has been validated via large-scale testing of monopile foundations at the two PISA test sites, the Dunkirk sand site and the Cowden clay site.

PLAXIS MoDeTo At-A-Glance

Modeling
- Seamless integration with PLAXIS 3D
- Nonlinear soil reaction curves for lateral loading, rotation, base shear, and base rotation (PISA) or lateral loading only (API)

Calculations
- Automatic calibration and optimization of numerical soil reaction curves (PLAXIS 3D)
- Robust 1D kernel with highly efficient calculation times

Results
- Realistic assessment of displacements and structural forces
- Visualization and export of numerical (PLAXIS 3D) and parametric soil reaction curves

Capabilities
- Timoshenko beam theory ensures accurate results even for large diameter monopiles
- Optimized design method for monopile foundations

Analysis of layered soil profiles in accordance with PISA Phase 2.